HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA.

نویسندگان

  • Lara Ajamian
  • Karen Abel
  • Shringar Rao
  • Kishanda Vyboh
  • Francisco García-de-Gracia
  • Ricardo Soto-Rifo
  • Andreas E Kulozik
  • Niels H Gehring
  • Andrew J Mouland
چکیده

Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. OPEN ACCESS Biomolecules 2015, 5 2809 We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SRp40 and SRp55 promote the translation of unspliced human immunodeficiency virus type 1 RNA.

Nuclear RNA processing events, such as 5' cap formation, 3' polyadenylation, and pre-mRNA splicing, mark mRNA for efficient translation. Splicing enhances translation via the deposition of the exon-junction complex and other multifunctional splicing factors, including SR proteins. All retroviruses synthesize their structural and enzymatic proteins from unspliced genomic RNAs (gRNAs) and must th...

متن کامل

The Human RNA Surveillance Factor UPF1 Is Required for S Phase Progression and Genome Stability

The eukaryotic nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs carrying premature stop codons (PTC). In humans, NMD depends on the RNA- and DNA-dependent 5'-3' helicase UPF1 and six other gene products referred to as SMG1, UPF2, UPF3, EST1A/SMG6, EST1B/SMG5, and EST1C/SMG7. The NMD machinery is also thought to coordinate mRNA nuclear export and translation and to regulate the levels o...

متن کامل

Structural insights into nonsense-mediated mRNA decay (NMD) by electron microscopy.

Nonsense-mediated mRNA decay (NMD) is a pathway that detects and degrades mRNAs containing premature translation termination codons (PTCs). In humans, recognition of these aberrant mRNAs requires an exon-junction-complex (EJC) placed downstream of a PTC and the dynamic interaction of several UPF/SMG proteins, the ribosome and the EJC. These interactions promote UPF1 phosphorylation by SMG1 kina...

متن کامل

HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors.

Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode...

متن کامل

Mammalian Staufen1 Recruits Upf1 to Specific mRNA 3′UTRs so as to Elicit mRNA Decay

Mammalian Staufen (Stau)1 is an RNA binding protein that is thought to function in mRNA transport and translational control. Nonsense-mediated mRNA decay (NMD) degrades abnormal and natural mRNAs that terminate translation sufficiently upstream of a splicing-generated exon-exon junction. Here we describe an mRNA decay mechanism that involves Stau1, the NMD factor Upf1, and a termination codon. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomolecules

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 2015